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Abstract

In this paper, we prove that for any A > 2, Qg (z), the number of
primes not exceeding x such that p — k is square free, have the following
asymptotic formula

Qk(x)=££<1+pz_1p_1>1;[(l_p(pl—l)> lim+0<@)

with x sufficiently large. Where the implied constant depends only on A.
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1 Introduction

In this article, We obtain the following results.

Theorem 1.1. For any A > 2, we have

Qy(x) = Cyliz + 04 ( (logxx)A)

where the constant
1 1
E p’—p-1 1;[ p(p—1)

To prove the theorem, we need the following simple ideas. The simplest one

> nuld)=6(n)
d|n

is

where

5(n)::{ 1 n=1

0 otherwise

Therefore we have

pi(n) = p(d)

d?|n

where the sum }° 2, is over all positive divisor d such that d?|n.
We also need a well-known theorem due to Bombieri and A.I.Vinogradov

Theorem 1.2. (Bombieri-Vinogradov)
Let A > 0, There is some constant B = B(A) such that

.
Z max max |7(y;q,a) — i) <A
4<a1/2 logaye V=" (40 #(9)

(log z)4 (z>2)

For the proof of the theorem, see [2].

2 Proof of Theorem 1.1

It is easy to see that

Qu(x) = pP(p—k)

p<z

Because any number n € N can be written as the form n = a?b uniquely, where
b is a square free number. n is square free if and only if b = 1, by the fact
0 = px 1 thus

pi(n) =Y pu(d)

d?|n



‘We obtain

@=> > wd=2 >  pd= ) pdnldk)

p<z d?|p—k d<\z pse d<\/z
p=k(mod d?)

Let £ = logz, we divide this sum in to two pieces, [,z £~ 50) [z*L~Bo, 21/?]

Q@)=Y wldr@d R+ > pdr(rd k)

d<z>L—Bo z* L~ Bo<d<x1/?

= Sa + Sa,1/2

For the first part, we can write 7(z;d?, k) as

L2 o Pk(d) i (e d2 _ Pk(d) i
m(x;d ’k)_ga(dQ)l +( (z;d* k) <p(d2)1 )

Where
pr(n) == > p(d)

d|(n;k)

is the characteristic function of the number n that relative prime with k. Thus
we get

Sa = lix Z pkw/jlgd) + Z N(d> (W(x;dQ, k) . pk(d)hl’)

2
periTn, el derT b, o(d?)

= Cilix+ O (lix Z pk;‘zipgd))

d>ze £~ Bo

+ w(d) ﬂ(a:;dQ,k)—pk(d)lix
X o (s = e

= Ciliz + O(S1) + Ra,

Where

pr(d)u(d) ( 1 ) ( | )
= 14 ———— 11— —
Z p(d?) g pPP-p-1 1;[ p(p—1)
2.1 Upper bound for S, /2, S; and R,
Now, we are going to find the upper bound for
San2 = Z /J(d)ﬂ'(.%‘;dz, k)
zo L~ Bo<d<xl/?

We only need to consider the trivial bound

m(x;d* k) < ﬁ



So we obtain

|Sa1/2] = > uldw(x;d k)

wo L—Bo<d<zl/?

<Lz E d=?
oL~ Bo<d<zl/2
1/2

< /;1: dt
T =
gor—Bo t2

< l‘l_a(logl‘)BU _ 331/2

Of course we let 1/2 > o > 0, namely |S,1/2| < 2'~*(logz)?°. Now, we are
going to find the upper bound for

: pr(n)p(n)
S = liz —_
n>:v°‘zﬁ Bo ’

In fact, this is very easy ,since ((d?) is approximately equals to d? for square free
number d. Thus S; will goes to zero in some sense like O(z1~97€) as z — oo.

Lemma 2.1. If d is a square free number, then we have

d
log log, dlogloglog, d)“

o(d) > (

where co > 0 is some constant.

Proof.

pd)=¢ | [Ir dH(lllj)zd 11 <1;>

pld pld P<Pu(d)

= dexp Z log (1 —1/p)

P<Puw(d)

2log2
> dexp Z _z08
P<Pw(d)
=dexp (72 log 2 (log log pe(a) + 1 + O(l/logpw(d))))

> de—CQ(IOg log log, d+log log log log, d)

d
(log log, dlogloglog, d)“




Lemma 2.2.

> pk(n)g(n) 217 (loglog, zlogloglog, ) 1 5,

;
w o(n?) (log )1~ B0

n>z> L~ Bo

Proof. Because p(n) = 0 if n is not square free, we can assume n is square free.
We have

p(n?) = ne(n)

Zi</°°ﬁ<<l
n2 = J,_1t?2 Tz

n>x

And

Thus

5 pr()u(n) | _ 5 1 (loglogyzlogloglog, 2)™
- no(n) z%(log x)~Bo

n>ze L~ Bo n>ze L~ Bo

And notice that lix <« z/log x, which completes the proof. O

Now we are going to consider the R,.

Ro= Y uld) <w(x;d2,k)pk(d)liw>

d<z>L~Bo <p(d2)

where the constant By = B(A)/2 is the constant in the Bombieri-Vinogradov
Theorem. Now we let a = 1/4, by the Bombieri-Vinogradov Theorem we simply
obtain

mA=| S @ (s - 2]

d<z'/*/(log x)Bo
9 lix o
< Z m(z;d*, k) — ST Z m(x;d*, k)
d2<z1/2,-2Bo SD( ) d2<21/2,—2Bg
pr(d)=1 Pl (d)=0
<« L
(log )4



2.2 Completion

Combining the results we got, for any A > 2, k € NT and x sufficiently large,
we have

Qk(l‘) = Ciliz + O(Sl) + 51/4’1/2 + R1/4

— Ol 3/4( Bo 4 .3/4(] Bo o
C’klcc+0<x (log z)7° + z°/*(log x) +(log:v)A

zlixg<1+pz_lp_1>1;[<l_p(pl—1)>+0<(1m;)f‘>

Therefore
Qu(z) = lixg <1 + p2_1p_1> 1;[ (1 - p(pl_1)> +0 (@)

This is the result we desire. As a consequence, we have

lim Qi ()

z—oo iz

:Ck>0

That is, the primes that p — k square-free has the positive density in the primes.



Appendix Table of Qi(z) For k =1,2,3

We made a program using C++ on our computer to calculate some numerical
value of Qi(x) (for k=1,2,3 and = < 107).

T Q1(x) Ciliz | O, 'Qi(x)/liz | Qa2(x) | Qs(x)
10 3 1.9148 1.5667 3 1
50 8 6.5156 1.2278 11 6
100 13 10.875 1.1954 20 10
500 40 37.676 1.0617 74 41
1000 68 66.027 1.0299 127 74
5000 255 255.50 0.99804 506 295
1 x 10 467 465.61 1.0030 925 548
5 x 10 1943 1931.7 1.0058 3841 2280
1x10° | 3599 3600.7 0.99953 7175 4292
5x10° | 15602 | 15559 1.0028 31020 | 18603
1x 10 | 29397 | 29403 0.99980 58653 | 35153
5x10% | 130391 | 130375 1.0001 260381 | 156249
1x 107 | 248518 | 248650 0.99947 496848 | 298075
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